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ABSTRACT

The 3otion of current {ndustrial zanipulators
is typically controlled so that tasks are sot jone

in a ainizuam tizme optimal msaner. The crasult |is
substancially lover productirvity thaa that
poteacially possible. Recently a computationally

efficient alzgorithm has been developed to fiad the
true aioizum time optimal zotion for a manipulator
moving aloog a specified path in space that uses
both the full nonlinear dynamic character of the
sanipula:gtz and the coastraiats {aposed by its
actuators ’ A Computer Alded Desiza (CAD)

iaplemencation of the algoritham called OPTARYM {s
described which can treat practically general six
degree-of-freedom =zanipulators. Examples are

presented which show JPTARM to be a useful desiga

tool for mamipulators, their tasks aad work
places. The algorithm is extanded {a OPTARM co
include the constraiants imposed by =zanipulator

payloads and end-effectors.

L. Introduction

The productivity of a3any {adustrial ctobdotic

manipulacor tasks can be {mproved by thaving
manipulators a2ove more gquickly. 3ut several
faczors Llimit aanijulator speeds, such as the

fiaite capabilites of a system’'s actuators and the
level of dynamic forces 4shich the object being
manipulated can tolerate <ithout damage or Seiag

deviations are highly undesirable and potencially

danzerous, particularcly in highly structured
{ndustrial environments. Since the actuators may
Ye 21ear sacuracion at ouly a faw pofats om the
pati, they will operate at less than their
capacity at sost points. Obviously a aanipulator
could operate faster by ucilizing {ts full

capacity at evary point alonz the path.

The dynamic forces actiang on the payload at
high speed aocion pose additional liaits onm
perforsance, as they 3ay be too high for some
fragile or seasitive objects, or the dymamic load
on the payload may b%e higher thaa cthe gripping
forces which {t holds. CGrippiag force caa be
limited by the gripper desiga, or Dy the
structural strength of the object. Violating the
end-effactor rippiag force or payload force
liaits are obviously equally undesirable.

This paper presents a Coaputer Alded Desiza

(CAD) optimal control techaique called OPTARM
(Optimal Time Coutrol of Articulated (Robotic
Maaipulators) which f{nsures cthat a manipulator

operates o the full capacity of {ts actuators aad
achieves true zinizum time motions.

The ainiaua tize optizal control problem for
manipulators is: ziven Socth the required {nitial
and end scactes, and cthe dymamic properties and
constraiats on system 3otioas, find the path aand
J0tion along it so that the final state is reached

pulled out of the zripper. Iven nmore importaat, in  aiaigum tize. This general problem is
the desizns of currtent sanipulator controllars do "difficult bSecause while coaventional optizal
not perait {adustrial sanipulators ¢o nove as control theory is well developed for linear
quickly as they aighe, Secause they do not use systeas, (t is Jifficult cto apply to coupled
effectively the full capabilities of their nonlinear dynaaic systeas 4ich complex
actuators, n0r operats at of near the limits constraints, such as rodbotic manipulacors. It has
{nposed by their payloads or end-effectors. been appllied to very simplified modclslofzthl
: nanipulacors without jach constraines’ ’* 4,

“Manijulator dyaasmics are highly aonlinear and These studies have siown that this type of
conplex. Their actuators are required to produce ipproach is computationally very iatensive.
conplex, time varying torques or forces Ia order Moreover, path consetraines (due to obstacles) are
for the mani{pulator o0 follow even relatively {mportant factors in practical applicatioas.
sinple paths; the dynamic forces at the jpayload
are equally complex. Today's commercial Jcher studies have considered the optimal
zanipulators are prograamed to amove along ctheic tiae problem for manipulators as they 2ove ti°°‘
paths with constant accelerations and velocities. specifiad paths chosen to avoid obstacles %,
The aagnitudes of these velocities aad The problem here {3 to find the motiocn along the
accelerations are usually chosen by trial aad path as a fuaction of time so that the task {s
ervor so that the actuatots will not saturate at - completed {n ninizum time without exceeding the
any pafat along the path. 1¢ the actuators capabilities of the system. While this approach
attempt to exceed their saturation levels at aay can easily coasider limits om the system's
poiac the manjpulator will leave lts path. Such’ motions, such as those lmposed by obstacles, the
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tzaveling time will be loager thas parmitting the
syscem co find its owa optimal path. Noue the
less, thase studies have not produced a true time
optimal solutiom for this problem.

Yowever, & receatly developed alzorithm for
the ainizus time countrol of nanipulactors meving
along a p:ucribcdl gath has proved to be
rigorously optizal™’'", It uses the fuil
nonlinear dymamics nodel. Actuators’ coastraiats
may be acrbitrary functions of the system staze.
This algoritha also has bean shown to be
computaticaslly efficient even for six
degree-of-freedon aanipulacors since it does 2oc
tequice the usual axtansive :m& tip:rau.gar
{teration common in optimal comcrol™’", The
QPTARM systza {3 based on this alzoriths with an
extension to include payload and zripper dymaaic
constraints. QPTAXL, with its interactive
graphics capabilities, has proven to be a
practical tool for desigaing general articulated
robotic manipulators, their tasks, and vork
places. Exanples are presentad hers for a $
dezree-of -freedom asnipulator. The ctesults show
that task tizes are siznificanctly reducad dy the
use of OPTARM. It has also been used as a_ key
element ia higzher level optimal task planmaing’,

II. The Time Optimal Control Alzoritha

The basic time optizal control algoritha used
here (s derived {n Rafereaces [l] and {2]. The
algoritha obtains the opea loop torques/forces for
the tize optimal sotion of a manipulator along a
prescrided path, subject to actuater constraiats,
It also yields cthe opt i mocion vhich can be
used ia closed loop camtrol®. The sethod {3
applicable to manipulators with rigid links for
which the dysamic msodal aad the joint coordinates
can be defined for any poinc om the path.

The approach uses a2 full aonlinear dymasic
model of a manipulator uhfch cac be urittem as:

MS+8TC8+G=T (1)

where M is a $x5 (nertia matrix, C is a Sxbxb
coriolis censor, G is a vector of the gravity
forcas, T (s the veczor of actuator efforts, and
8, . and & are the § joiat displacements,
velocities and accelerations, respectively. The
limits of the (th actuacor 3zay be any functioas of
9, aand §;: . .

Tinisl@:9) € T; € Tin19.0) 2)

The path of the ead-effector i3, P =
{x719.v.wy}, or {X.w}, vhere X, {3 the position
of the path and ¥ reprasents the oriestation of
the end effector fixed frame, 4, vith respect to
{nercial frame i (ses Figure l). Clearly.P (s a
kaown function of the iisplacement along the path,
S. The joint angles 2ay ba expressed i{an cterms of

the path  variable S, using the kinemacic
traasforaation:

B(S) = R(®) (&)

Differentiating Yquation (3) twice with respect to
tize and solviag for @ and & ylalds:

@ =RgPyS (6)
G = Ry (Bl + Py 5% - (Rg By)T Reg (RG By 57 )

vhere Ry 13 the Jacobian macrix, Ra(i.i)-ani/aoi .
The partial derivatives of Rgwith respect 0 @
Tesult i Rgyg, the Hassian matrix. The s and e
subscripts denote partial devrivatives with respect

to the scalar § and cthe vector @ respectively.

The veczors Pg and Pgg can bde writtea as
(Xg tg) and {XsgPggl. Xg I3 & unlc vector
tangent to the path, while ) is a vector of
magaitude 1/ sormal to the path, 2 bdaing the
radius of curvature of the path.

Fig. 1: Six Degree-of-Freedom Robotic Masipuiator.

Substituting Equation (4) {ato Equation (17,
yields the equation of azotion in tarms of €, § and

me)S + 1O S+ GO =T (s

wvhere m and b are defined i{n detail ia Reference
{4]. @ can be obratned either explicitly or
qumerically as a function of §.

The objective of the optimization s to fiad
the veczor T thac aoves the 3zanipulator along the
pach (a mimizum zize. The transit tize, J, say be
sritten as: Sde

J = — (6)
Sq S

Reference [l] proves rigotously that J will bae
ainimum {f the acceleration along the jath, §, is
equal to either its aaximum or the aininun
permissidle values, § or §,. S5ix values for §
are obtained by solving each rouw of ZEquaticm (3)
for S: . Ti'bi s!_ci

€D
™ .

The upper and lower bounds for aach §; for
given. S aand § are obtained by substituting the
upper and lower bauads on T from Equation (2).
The bars {a Figure 2 represeat the ranges of §
peraitted by each actustor. Amy accaleration out
of the range of the {th actuator is beyond the
capability of that actuator to  keep the
manipulator omn {ts path. Clearly, the peraissible
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caoge of § sust lie in the common range of all the
actuators. Thus:

s‘(s.sl 35§83 (8
. T _ -55§'-G
s. - min ( imas ! ’
i L

§‘-mu{ "

At each poiac, §, the bounds oa § are
functions of cthe velocity §. Generally,
ineteasing § results ia a decrease {3 the size of
the permissidla acceleration range. The velocity
at vhich the paraissidle accsleration raage .is
zeto (or § = S) {s the saxiamum permissidle
veloctty, §,° Fcts grester thaa §. no soluticm
for the acceletatiom § exists, vntch seans that
the asnipulator is not capable of keeping its tip
on the path. The values S as & function of §

form the velocity liate cutvc. S.(Sl ., shows fa

figure 3. At each poiat §, §. is found by
facreasing § from zevs watil § =m§,.
MOTOR NO.  3(T,min) a(T, maz)
1
2 0
3 !
4 1
s i
8 g(f‘ala) ! 5(7.-.:)
! \
— o
° 3. i
Permitted range ' \
ot sccelerstion —r"'—""?

Fig. 2: Permusible Acceierstion Aloeg the Pach for 3 Gives
Valueof S aa8d S.

It aight Se¢ notad that it (s cheoretically
possible for the liait cugrve to form closed
regions or be doubled valued*”,(ses fizure 3).
This azeans that at these poiats ou the path the

"actuators are too veak to keep the sasipulacor on

the path at some low speed, but at a higher speed
the zanipulator could ssiataiz {ts path by passing
above those tegions. However, operating iz such a
macner {3 ast desirabls and even jotentially
dangerous: 1f, vhile operating above a forbidden
vegioa the manipulacor had to stop as guickly as
possible on {ts pach dus to somse prodlem, it would
likaly leave its path and could collide with an
obstacle. Also our studies showed a0 such
forbidden rtegions for systems with realiscic
patametsrs. Heancs , OPTARM uses only the lowest
value of §, vhers § —g.. to define the limit
curve, as shova {a thut- 3.

Refarsace [1] shows that the miafmum time
agtion s achiseved when § i3 equal to either
H JS3) or S4SS) act every point on the psth. It

also shows that the ainisus time coutrol problem
i{s reduced to fiading the switchiag peiats bHetweem
3(53; and §,SS) such that § (s aslvays
uxtm-. Suc vi.:han: having the trajectory {a the
phase plase cross the limit curve. Refarence [1]
prasents the following algoriths, to fiad che
opeimal motion (refer to Figures 3):

1. Ilategrate S e § (S.Sl forvard (a3 time with the
fagtial conditions S.. and S uncil the trajectocy
intersects the S curve at :o-. poiat a.

1. Ac point a, rteduce the valocity along the
dottad path until b, wvhere If 3-5(5.5) is
integraced forvard uneil  zate vcloet:y, it
coincides with s at some siangle point ¢, a point
of tasgency for eou:tauous s curves.

3. From b, iotegrats S § (s,s) backvard i{a tise
to  yield tha flrse witeung poiat from
accaleration to decelectation, d.

4. Point ¢ i3 a switching point from decealeration
to acceleratios. From c, lacegrace § = 3§ (S.35)
forward in time uatil eithar the flusl pou.uel.
S¢s Ls teached, or the trajectory sgain iatersects
the S, curve. 1f the S_ curve is {ntersected,
Tepeat the process starting with scep 2 at this
{ntersection point. Note ¢that st poinc ¢ the
ssximus accsleration and the agxisum decsleratica
are tha same.

$. From §; and §;, integrate $ = § 4(55)  baciwasd
in ziae za find the final switching potn: at e.

Nt B
3

S Switen 1 Switeh 2 Switen 3

Fig. 3: Coastruction of the Optimal Trajectory in the Phase
Plage.

Once tha optimal ,trajectory ls obtained, the
optimal values of &, & and T(8) are computed,
usiag Squations (1) t3 (S). Note that the iaitial
aad final velocities do not need ta de zero,

This techaique may be extended to iaclude
other conscraints that can be expressed as
functions of §, § and §, {n sdditica to those om
the actuatars. These counstraincs ate transformed
into bounds on §(5.5)and form aedditiomal bars In
Figure 2. OPTARM contaias coascraliats oun the
payload accelaration and the grippiang force which
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satisfy the above coudition. Simple examples of
this procedutre are pressazad balow. firse, the
l1imits ow the payloed dymamic forca {s considered
with the forw:

lgls'n (9)

vhere 3, {3 the aaxisum allowable inertial
ac..llora:!.ou of the payload, X. 1f the path,
position X, shown Iz Figure 1, is defined by the
position of the payload center of aass, :hcnx is
given Ddy:

i‘&sé"'&g (10)

ulun&rnd Xqg 3te the first three elaenes of Py
and Fes {a Zquation (&) tespectively.
Substitucing Equatiom (10) into Iguation (9) and
solviag for § yields:

5.5 Vi g

Sg2-Val- X5t

Zquation set (ll) bdounds the acceleracion § a5 a
function of 3 and the velocity §; this limit is
added to those of the actuators in foraing

fquatiog set (8).

(1)

Second, the following simple exasple shows
hov to obtaia the constraints imposed Dy the
grippiag forcea. For the simple parallel jaw
gTipper: shown I{a Figure &4, the payload inertial
force actiag parallel to gripper surface sust net
exceed the friction forces bSetween the payload and
the gripper jaws, {f the object is not to be
pulled from the gripper. Gravity is seglected for
the sake of claricy. Fizse the inertial
scceleration X of the center of mass of the
paylosd is resolved  {ate tvo  perpendicular
cospouents, X. and X, showva ta FiguTe &. X is
the compounent iz the z directiomn, aad Y u the
couponn: ia the x-y plane. The ugatmdu of x
and )L are ziven bdy:

X, =% ¢ (12)
. [—
X, =VvX.x3 an

where ¢, is the unit vector i{a the z directioa of
the grioper fraames. The friction forces act

patallel zo the x-y plana. The total friction
forca, F, is limicad dy:

FfS’“F.*“mpix-‘ (14)

vhere T, {3 the mass of the payload, B is the
coefficient of f€riction bdetween the payload and
the gripper surfaces, and F is cthe applied
squeeze forca. The ptucnuuou does aot coasider
rotations withia the gripper, although these can
be inciuded ia a similar zanner. To zaintaia a
fira grip the componeat of the Iinsrzial forcs
acting om the payload {3 the x-y plane {s limicted
by the saximum F,.

m,x‘-ZnFlﬁ-nm,lx.l (13

Substituting EZquations (10), (12) aad (13) {ate
Equacion (15) yields the followiag quadratic

equation in §: d
aS?+pS5+c<gO (16)
vhere

a-ni(i-(l-ru:)v’) (17
b= -Zuin-v(hu:)é’ - 4¢'m F ‘vmhé’wﬂ
¢ - mi(& - (1+u’e)S0 . 4u:m'l-"-46¢l(u§’+v§)§’ - (M‘)’

aad

u-k e

Tha solutions to Zquation (16) defime cthe bdounds
on § due to the consctraine on the gripplag force.
Thase bounds depend on the path tirough Xg and

» the oriencatioa of the gripper through ¢,
the applied squeesing forcs, F_, the payload sass,
m,, ansd the coefficient of friction, # . The
existasce of a solution for § i3 Equactios (16)
depeads oa the value of the velocity §. The
lovast positive value of S for which no solution
exiasts defines the velocity limit & . The bouads
on the accaleration in Zquation (16) are applied
{a OPTARM in a sisilar sacner as the other
coastraiats discussad earllier.

of Paviasd CQ

P2

Fig. 4 The Absciute Acceleration of Payioad C.G. aad its
Compogeats ia the Gripper Fixed Frame.

LII. JPTARM

This algorithma has been {mplementad in a
program called JPTAXM for six degree-of-fraedom
aanipulators. It considers the three dimensional
paths and end-effector aotions with stralghe
lines, circular curves and splines. It computss
the full nonlinear dynasic matrices of cthe
2anipulator and cthe path charactaristics ac,
typically savearal tundred, discrete poiazs aloang
the path. Other O7TARNM's outputs are the actuatac
torques for the dynamic feed-forward comntrol, the
Joint positions, velocities and accaleratioas for
closed loop control, and facludes other {ampocrtaac
iaformation for the desizner like the actuators’
pover. OPTARM, is vrittea la FORTRAN and requires
less than JO seconds of cosputation time on a
sini-computer 0P 11/44 to complete & full
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optimizatios of a typical induatrial manipulator,
including the graphics coaputatiocas. The
relatively short computacion times aad {ts
iateractive graphics make tha program aa effective
tool for improving manijulator dynamic
performance, sanigulator design, and the desizn of
thelr tasks aad work placas, as democastrated {n tha
following examples.

V. Exsmsles

The folloving aexamples are presancad to
demonstrate capabilicles of cthe OPTALM progras
usiag the 3ix degree-of-freedom sanipulator, shown
{a Figure 1. The paramecers of this manipulater
ate given ia Table 1. :

Tabie 1: Masipuiator Parameters.

L kw Mass Principal Momest of
meter meter Kg Inertia sbout C.G., Kem'
Lisk 1:11.0 03 70 00 1.0 10
Lisk 2: 1.0 0.3 so 00 (0 10
Lisk 3:10.28 0.28 30 00 025 025

The first axample showus the typleal
improvement ia performance over coavenctional
control which can ba obtained by using O0PTARM.
All the figures shown are hard copies of OPTARNM
graphic displays. Fi{gute 3 shous a three
dizensicunal view of the manipulator 3oving from
rest at poiac A, (0,0,1.3), along a straight liae
directed toward poiac (1.7,0,.5,3). At poilant B
it takes a circular curve of 3.5 a radius to point
C, then goes finally along a sctraizht line co
poiae D, (1.3,9.5,-1.3). ODuriag the move the
and-effector remains parallel o the X axis.
Figure 5 shows the phase plane trajectory of the
optiaal motiom far chis path. Yote that the
zaximum acceleration can be negative {n some range
of the ctrajectory. The time reaquired for the
motion {3 L.185 seconds. The use of couventional
congrol with constant acceleration velocity aand
decaleration, also shoun in Figure 5, required
L.575 seconds, 417 longer. This substantial

{mprovement in the traveling time required ao -

change ia the zanipulacor’s hardware. Moreover, by
using JPTARM interactively, it was shown that the
traveling time could bde reduced further by an
additi{onal 213 to J3.730 seconds while still snoving
SetJeen the same end poiats Dby ilncreasiag the
tradius of the curved section of the path from 0.5
to Ll.3 secers. This shows the potential of the

technique to select a better path for a1 given
task.

The next example shows an improvemeat in
systas performaacs by an OPTARY 1o0dification of
system desizn. Figure 7 shows an  optimal
trajectoty alomg a path with a similar fora as in
the first example, except that it scgarts at
(6.15,0,1.3), ctowards poime (1.3,3.5,1.3), and
stops at poiae (1.3,0.5,-1.3); the curve radius
ts 1 nmecar. The optimal motion for this path is
1.376 sec., and has only one switching pofat. As
can ba seen in F{gure 7 the trajectory does aot
approach the llait curve, suggescing that the
system is over-desizned for this task. The first
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three asctustor totquaes ars shown {(n Figure 3.
OPTARM provides all § actuator torquas. At each
peint oa the path, ove of the § actuators (s at
its limic, It caa ba seen that actuator 1 is
sever aear its limfc. Reduciag {zs size ceduces
the 30tion time bdecause its reduced vaight lowers
the load on the other actuators. FTigure 9 shous
the optimal ctrajectory along the same path with
actuator ] torque level and wveight reduced dy $3%.
The time decrsased from 1.076 seconds to 1.043
seconds. Even though the reduyction in time {s not
larze (o this case Lt does demoustrate that
properly selected smaller actuators can increase
manipulator quickness i{a soade cases.

Fig. 5: Manipulator's comfiguration 3t eeiected poiats aloag
Pah #1.

a8 =
[ : Qotumal Troveiing Tims = LIS e
Cosventssanl Troveiing Tioe @ LETS o

5.3

$ miereroec

a3
a3 1.8 2 .9 .9
S mner

Fig. 6: Phase Plage Plots for Path #1,for Conventional and
Opumal Controllers.

The naext exanple shows the performance
{mprovement ctesulting from a redesign of the work
place. Flrst the =anipulator moves (from one
work-station o cthe next aloag a straight liane
from paint (0,0,1.3) to (1.0,0.5,-1.3). WNota that
the initial and final velocities acre not zero at
these pofints, as aight be rcaquired {f these
work-staticons were moving conveyer belts. The
traveling time of the optimal trajectory was 1.050
sac.. A gmove of the two end-poiats away froa the
base of the manipulator by (9.5,0,0), resulted in
the optimal ctrajectory shown {n Figure 1J and a



reduction io time by 49% to 03,3530 seconds. The
casea also demcnstrates that the {nitial or fiaasl
velocitias nsed net ds zeve.

. -

= Opeamal Trovuiing Thae w 1978 wu.

8.3

.3

H

i
- Sy . [ - b

[ 9]

[ ¥ ] .3 3 13 [ )

——— | T, | € 2 N
e | Ty | § 188 My

iTyi S 100 Ne
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.3 .3 21 13 [ ]
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Fig. 8: Joint Actuator Torques as 3 Fuactios of S.
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28.3
Optsmed Traveling Tiowe @ 1.063 sou.
8.3
8.3 Liamt Curve §
% RARS 1]
iT, S 1w
[Tyl g 8N
3 r
i
- 3 , \ 3
3
.3 1.8 3 3.3 4.3
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Fig. 9: Optimal Trajectory for Path #2 with Reduced Actuator 3.

a9 N Optumal Troveting Tiase = 0530 e
15.3
8.3
S.9
3
H Sy = 3 m/osm. X
; i i i i.‘.’—‘
-t L
a3

[N ] 3.58 1.0 .58 2.8 2.38 kN )

Fig. 10: Optimal Trajectory Aloag a Straight Lise with Nossero
Initial and Final Velocitiss.

Fizure L1l shows the sffect of constraiasts om
pavload accaleraticn on the optimal tra)ecctory.
The optiaal trajectary, using the same path as In
the firsc example, path #1, with a coastralat om
the paylosd acceleration of 20 a/sec. (2 g's)
Tesults [n a coanstant veloecity along the circular
curve; the centrifugal dynamic foree (uwith the

payload mass beiag 1 Xg) vas equal to the liatt oa
the acceleracion.

as Optimai Troveiing Tiame w» 1100 o
M Peyinad Asssimntion = 30 a/om.?
Payiond ann = | Kgn
Curve Radin @ 03
1.8
List Curve §
&9
Velomty Liswt
ainag e Corve
e - %
H 5
k] 5
i
- .
s
3 1.3 2.2 13 4.2

S movwr

Fig. 11: Opumal Trajectory for Path # 1 with 3 Limic on the

Payload Aceeleration.

V. Sanclusions

This paper shows that _a recestly developed
algoritha {s opractical for the time optimal
coatrol of six dagree-of-freedom manipulators
moving along a prescribed pjath subject to actuator
coastraiats. Such aptimal motion (s shown to be
sigaificantly faster tiaa conventional <control
strategias currently (o use and can lead <to
greatear system productivity. The algoritha is
extended to {nclude coastraints om the gripping
force and on the payload acceleration. It also
describes an {nteractive CAD lmplementation of the
algoritha, OPTARM, and examples are presented of
Lts use to optisize manipulator perforazance,
designs, tasks and work places.
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APPENDIX III

TIME OPTIMAL TRAJECTORY PLANNING FOR ROBOTIC MANIPULATORS WITH OBSTACLE
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